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Objectives

Within this project, we want to go beyond the spectrum to compute the 
properties of the excited states. In particular,  we probe the structure of the pion 
and its excitations through the computation of the quark distribution 
amplitudes on improved anisotropic lattices.
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Anisotropic lattices

In Euclidean space-time, the excited-state spectrum can be computed by 
observing the behavior of correlation functions formed from appropriately 
constructed operators: 

These correlation functions decay faster than those for ground state, and at large 
times propagation of noise swamps signals.

To overcome this difficulty we use anisotropic lattices with finer temporal 
discretization.
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The lattice action
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Nf = 2 + 1

3

Ns Nt atml atms atmπ r0/as Ncfg

16 128 -0.0743 -0.0743 0.1483(2) 3.21(1) 535

16 128 -0.0808 -0.0743 0.0996(6) 3.51(1) 470

16 128 -0.0840 -0.0743 0.0691(6) 3.65(1) 480

TABLE I. Lattice extents (Ns and Nt), the bare masses of

light quark atml and strange quark atms, the pion mass atmπ,

the Sommer scale r0, and the number Ncfg of gauge-field con-

figurations. On each configuration, solution vectors are com-

puted from Nvecs = 64 distillation vectors [? ], located on a

single time slice.

Ns Nt atml atms atmπ Ncfg

16 128 -0.0743 -0.0743 0.1483(2) 535

16 128 -0.0808 -0.0743 0.0996(6) 470

16 128 -0.0840 -0.0743 0.0691(6) 480

here are shown in Table ??. The mass of the Ω-baryon
is used to set the scale, and was determined within an
estimated uncertainty of 2% in Ref. [? ] on the same en-
sembles; to facilitate comparison with other calculations,
we also provide the value of the Sommer parameter r0 on
each ensemble.

B. Variational method

A detailed description of the Hadron Spectrum Collab-
oration implementation of the variational method can be
found in Ref. [? ], but we summarize it briefly here. The
approach involves the solution of the generalized eigen-
value equation

C(t)v(N)(t, t0) = λN (t, t0)C(t0)v
(N)(t, t0). (5)

At sufficiently large t > t0, the ordered eigenvalues satisfy

λN (t, t0) −→ e−EN (t−t0),

where EN is the energy of the N th state. The eigenvalues
are normalized to unity at t = t0, whilst the eigenvectors
satisfy the orthogonality condition:

v(N
�)†C(t0)v

(N) = δN,N � . (6)

Identifying the energy of the N th state with its mass,
the overlap factors ZN

i of the spectral representation are
straightforwardly related to the eigenvectors through

ZN
i =

√
2mNemN t0/2v(N)∗

j Cji(t0). (7)

We can define an “ideal” operator

ΩN =
√
2mNe−mN t0/2v(N)

i Oi (8)

within the operator space for the state N [? ], where
the v’s are obtained from the solution of the generalized
eigenvalue equation at some t = tref , and the operators
are normalized so as to remove the dependence on t0.

C. Interpolating operator basis

The efficacy of the variational method relies on an op-
erator basis that faithfully spans the low-lying spectrum.
The construction of single-particle elements of such a ba-
sis is described in detail in Refs. [? ] and [? ]. Briefly,
each operator is constructed from elements of the general
form

ψ̄Γ
←→
D i

←→
D j ...ψ, (9)

where
←→
D ≡ ←−

D −−→
D is a discretization of gauge-covariant

derivatives, and Γ is one of the sixteen Dirac matrices.
We then form an operator of definite J and M , which we
denote by

O
J,M =

�
Γ×D[N ]

JD

�J
. (10)

We note that both charge conjugation, for neutral par-
ticles, and parity are good symmetries on the lattice,
but the full three-dimensional rotational symmetry of the
continuum is reduced to the symmetry group of a cube.
In the case of integer spin, there are only five lattice ir-
reducible representations, irreps, labelled by Λ with row
λ, instead of infinite number of irreducible representa-
tions labelled by spin J in the continuum. For this study
we are interested in mesons of spin 0, lying in the A1

irrep; we note that this irrep also contains continuum
states of spin 4 and higher. The subduction from the
continuum operators OJ,M of Eqn. (??) onto the lattice
irreps denoted by Λ and row λ is performed through the
projection formula

O
[J]
Λ,λ =

�

M

SΛ,λ
J,MO

J,M , (11)

where SΛλ
J,M are the subduction coefficients.

We use all possible continuum operators with up to
three derivatives, yielding a basis of 12 operators. An im-
portant observation is that for the “single-particle” oper-
ators used here, there is remarkable manifestation of con-
tinuum rotational symmetry at the hadronic scale, that
is the subduced operators of Eqn. (??) retain a memory
of their continuum antecedents [? ? ]. One of the opera-
tors arises from a continuum operator of spin 4. Several

operators, notably two of the form
�
Γ×D[2]

J=1

�J=0
, cor-

responding to the coupling of a chromomagnetic gluon
field to the quark and antiquark; these operators are used
as signatures for “hybrid” states with manifest gluonic
content.

The combination of the variational method, our opera-
tor constructions, and the distillation method, described
below, applied to the anisotropic lattice ensembles has
been shown to be very effective in studies of excited light
isovector mesons [? ? ], isoscalar mesons [? ? ], mesons
containing charmed quarks [? ? ] and of baryons [? ? ?
? ]. We now show how to exploit this toolkit to extract
the vacuum-to-hadron matrix elements of excited states.

Relation between spatial and 
temporal lattice spacing:

Table I. Gauge configurations.

ξ =
as
at

≈ 3.5

We use dynamical anisotropic lattices generated by the Hadron Spectrum 
Collaboration [1, 2]:

                     flavor ( 2 dynamical light quarks and a dynamical strange quark) 
‘clover’ action with stout-link smearing;

Symanzik- and tadpole-improved gauge action.

[1] R. Edwards, B. Joo, H.-W. Lin, Phys. Rev. D78 (2008) 054501. [2] H.-W. Lin et al., Phys. Rev. D79 (2009) 043502.
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Meson spectroscopy on the lattice

To extract the spectrum of the excited states from the exponentially suppressed 
signals, we apply the variational method [3, 4]:

It let us extract more information by analyzing a whole matrix of correlators for 
each irrep:

To determine the physical observables from this matrix, we solve generalized 
eigenvalue problem:

5

[3] C. Michael, Nucl. Phys. B259 (1985) 58. [4] M. Luscher, U. Wolf, Nucl. Phys. B339 (1990) 222.

Cij(t) = �Oi(t)O
†
j(0)�
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j
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Basis of interpolators and distillation technique

It is essential to use a “good” basis of interpolators which would generate states 
from the vacuum that have large overlap with the physical state we are 
interested in. 

            To achieve this, we use the distillation technique [5]. It defines a smearing 
function

and provides an efficient method which allow us to calculate correlation 
functions with large basis of operators.

Smeared quark fields are constructed by applying this distillation operator to 
each quark field appearing in the interpolating operators.

6[5] M. Peardon et al., Phys. Rev. D80 (2009) 054506.

�xy(t) =
Nvec�

k=1
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“Ideal” operator

Different interpolators one might use in the variational approach are just the 
basis one offers to the system. The relative weight of these basis elements come 
out of the variational procedure:

once generalized eigenvalue problem

is solved, one can define new interpolators       as a linear combination of the 
original interpolators:

7

         the variational method determines which linear combination of the basis 
interpolators best describe a physical state (an optimal operator).

Cij(t)v
(n)
j = λ(t)(n)Cij(t0)v

(n)
j

Ω(n)

Ω(n) =
r�

i=1

v(n)∗i Oi
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Pion decay constant

We apply the combination of the variational method, operator constructions, 
and the distillation method to the anisotropic lattice ensembles to extract the 
vacuum-to-hadron matrix elements of excited states: 

The decay constant on the Nth excitation of the pion:

 (with                              and                     )  

 We extract the lattice decay constant of the Nth excited state through the two-
point SL correlation function constructed using the optimal operator  at the 
source:                      
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�0|Aµ(0)|πN � = pµfπN

CA4N (t) =
1

V3

�

�x�y

�0|AL
4 (�x, t)Ω

†S
N (�y, 0)|0� → e−mN tmN f̃πN

Aµ = ψ̄γµγ5ψ π = ψ̄γ5ψ
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Axial-vector current: improved vs. unimproved

On isotropic lattice,                             (                at tree level).

On anisotropic lattice, mixing with higher dimension operators occurs at tree 
level

 - we consider the ratios of the decay constant of an excited state and that of the 
ground state for both unimproved and improved currents;

 - we quote the absolute values of the decay constants in the subsequent 
analyses.

9

Aµ = ZAA
lat
µ ZA = 1

AI
4 = (1 +matΩm)

�
AU

4 − 1

4
(ξ − 1)at∂4P

�
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Calculations

We form the combination

A three-parameter fit in                                    yields the value of the decay 
constant.

10

emN t

mN
CA4N (t) −→ f̃πN +BNe−∆mN t

{f̃πN , BN , ∆mN}
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Calculations
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Table II. Unrenormalized values of 
the pion decay constants for the 
ground state and first three 
excitations.

5

mπ (MeV) N = 0 N = 1 N = 2 N = 3

702 0.1483(1) 0.3619(11) 0.4439(34) 0.5199(61)
0.1482(4) 0.3600(84) 0.3664(975) 0.5569(506)

524 0.0999(5) 0.3118(31) 0.4028(43) 0.4493(149)
0.1008(4) 0.3134(99) 0.4047(683) 0.4361(460)

391 0.0694(2) 0.2735(31) 0.3665(34) 0.4209(99)
0.0709(10) 0.2626(93) 0.3592(688) 0.4270(75)

TABLE II. The first line for each ensemble lists the masses
of the pion and its first three excitations in lattice units ob-
tained from the variational method. The second line lists the
masses obtained from a two-exponential fit to the correlator
of Eqn. (16) using the optimal interpolating operator from
the variational method at the source, and the unimproved
axial-vector current at the sink.

of the eigenvectors ξ. The correlator onto the optimal
operator for the N th excited state immediately follows
from Eqn. (16).

IV. RESULTS

The determination of the excited-state spectrum us-
ing the variational method has been described in detail
in Refs. [2, 3], and we merely present the results for the
spectrum of the lowest lying states as the first row for
each ensemble in Table II; we quote only the lowest-lying
four states in the spectrum, since the next state is iden-
tified as having spin 4, as we discuss later. In practice,
the coefficients giving rise to the “optimal” operator for
the N th excited states must be determined at some value
tref > t0; we take the value of tref as that which gives the
best reconstruction of the correlation matrix used in the
variational method, following the technique described in
Ref. [3]. The decay constants fπN are obtained through
the correlation function CA4,N (t) of Eqn. (16), using the
optimal operator determined above. The mass spectrum
obtained from a two-exponential fits to these correlators,
using the unimproved axial-vector current at the sink, is
listed in the second row for each ensemble in Table II.
The consistency between the resultant spectra is encour-
aging.

In order to extract the matrix element, we form the
combination

emN tCA4,N (t)/mN −→ f̃πN +BNe−∆mN t, (22)

using the mass mN obtained through the variational
method. A three-parameter fit in {f̃πN , BN ,∆mN} then
yields the value of the decay constant. In Table III we
present, as the first line for each ensemble, our results for
the absolute, unrenormalized values of the pion decay
constants atfπN for the ground (N = 0) and first three
excited states (N = 1, 2 , 3), obtained using the unim-
proved axial-vector current. As discussed earlier, the use
of an anisotropic lattice introduces mixing with higher
dimension operators, even at tree level. We thus calcu-
late the decay constants through Eqn. (16), but using

mπ (MeV) N = 0 N = 1 N = 2 N = 3

702 0.0551(3) 0.0319(10) 0.0005(12) 0.0307(23)
0.0716(6) 0.0556(52) 0.0041(23) 0.0565(54)
0.0710(4) 0.0543(8) 0.0017(21) 0.0466(54)

524 0.0441(5) 0.0261(12) 0.0057(3) 0.0315(31)
0.0565(18) 0.0465(27) 0.0065(43) 0.0493(132)
0.0564(6) 0.0476(62) 0.0083(10) 0.0483(91)

391 0.0369(7) 0.0218(15) 0.0062(18) 0.0256(5)
0.0476(8) 0.0429(113) 0.0138(28) 0.0508(11)
0.0473(9) 0.0398(90) 0.0140(67) 0.0462(11)

TABLE III. The unrenormalized values of atfπN for the
ground state and first three excitations. For each ensem-
ble, the first line are the values computed using the unim-
proved axial-vector current, while the second and third lines
employ the improved axial-vector current of Eqn. (14) with
the derivative of the pseudoscalar current computed using the
corresponding energy of the state, and a finite time difference,
respectively.

mπ (MeV) N = 0 N = 1 N = 2 N = 3

702 0.0551(3) 0.0319(10) 0.0005(12) 0.0307(23)
0.0716(6) 0.0556(52) 0.0041(23) 0.0565(54)
0.0710(4) 0.0543(8) 0.0017(21) 0.0466(54)

524 0.0441(5) 0.0261(12) 0.0057(3) 0.0315(31)
0.0565(18) 0.0465(27) 0.0065(43) 0.0493(132)
0.0564(6) 0.0476(62) 0.0083(10) 0.0483(91)

391 0.0369(7) 0.0218(15) 0.0062(18) 0.0256(5)
0.0476(8) 0.0429(113) 0.0138(28) 0.0508(11)
0.0473(9) 0.0398(90) 0.0140(67) 0.0462(11)

the improved axial-vector current of Eqn. (14). We can
evaluate the partial derivative of the pseudoscalar cur-
rent contributing to the improved current in two ways:
by replacing it with energy of the state, ∂4P → ENP ,
and through the use of a finite difference between suc-
cessive time slices, ∂4P → P (t + 1) − P (t). These are
presented as the second and third rows for each ensemble
in Table III. The two methods of computing the tempo-
ral derivative are in general consistent, and we will use
the finite-difference method in the subsequent discussion.
Finally, as an illustration of the quality of our procedure,
we show in Figure 1 the data for Eqn. (22), together with
the values of atfπN obtained from the three-parameter fit,
for the Nf = 3 ensemble.
The decay constants atfπN for each of our ensem-

bles computed using the unimproved and improved axial-
vector currents is presented in Figures 2 and 3, respec-
tively. We observe a decrease in the value of the decay
constant up to and including that for the second excited
state on all three ensembles, irrespective of the use of
the unimproved or improved axial-vector current. In Fig-
ure 4, we show the ratio of the decay constant of the first
excited state to that of the ground state, a combination
in which the matching factor cancels, for both the unim-
proved (green) and improved (red) currents. Whilst we
note that the improvement term represents a significant
contribution at each quark mass, once again the behavior
of the ratios remains the same for both currents.

2 ways to evaluate the partial derivative of the pseudoscalar current:

∂4P → P (t+ 1)− P (t)∂4P → ENP
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Results
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Fig. I. The unrenormalized values of the pion decay constants for the ground and first three 
excitations: using unimproved (left) and improved (right) axial-vector current [6].

[6] E. Mastropas, D. Richards, arXiv:1403.5575[hep-lat].
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Results
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Fig. II. Ratios of the excited-state decay constants to the ground-state decay constant for the first 
three pion excitations, using unimproved (left) and improved (right) axial-vector current [6].
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Previous lattice calculations
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Fig. 3. Ratio of the decay constant of the 
first excited to ground state light pseudo-
scalar meson as a function of the pion 
mass squared [7].

[7] C. McNeile,C. Michael, Phys. Lett. B 642 (2006) 244.
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Results
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Fig. 4. Ratios of the decay constant of 
the first excited and ground-state pion 
as a function of the pion mass [6].
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Results
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Fig. 5. The linear (left) vs. constant (right) fits in pion mass squared to the ratio of decay constant 
of the first excited state to that of the ground-state [6].
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